Copied to
clipboard

G = S3xC32xC6order 324 = 22·34

Direct product of C32xC6 and S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S3xC32xC6, C34:7C22, C32:4C62, C6:(C32xC6), C3:(C3xC62), (C33xC6):1C2, (C32xC6):7C6, C33:11(C2xC6), (C3xC6):3(C3xC6), SmallGroup(324,172)

Series: Derived Chief Lower central Upper central

C1C3 — S3xC32xC6
C1C3C32C33C34S3xC33 — S3xC32xC6
C3 — S3xC32xC6
C1C32xC6

Generators and relations for S3xC32xC6
 G = < a,b,c,d,e | a3=b3=c6=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 760 in 436 conjugacy classes, 196 normal (10 characteristic)
C1, C2, C2, C3, C3, C3, C22, S3, C6, C6, C6, C32, C32, D6, C2xC6, C3xS3, C3xC6, C3xC6, C33, C33, C33, S3xC6, C62, S3xC32, C32xC6, C32xC6, C32xC6, C34, S3xC3xC6, C3xC62, S3xC33, C33xC6, S3xC32xC6
Quotients: C1, C2, C3, C22, S3, C6, C32, D6, C2xC6, C3xS3, C3xC6, C33, S3xC6, C62, S3xC32, C32xC6, S3xC3xC6, C3xC62, S3xC33, S3xC32xC6

Smallest permutation representation of S3xC32xC6
On 108 points
Generators in S108
(1 23 58)(2 24 59)(3 19 60)(4 20 55)(5 21 56)(6 22 57)(7 106 94)(8 107 95)(9 108 96)(10 103 91)(11 104 92)(12 105 93)(13 90 52)(14 85 53)(15 86 54)(16 87 49)(17 88 50)(18 89 51)(25 66 73)(26 61 74)(27 62 75)(28 63 76)(29 64 77)(30 65 78)(31 79 98)(32 80 99)(33 81 100)(34 82 101)(35 83 102)(36 84 97)(37 71 46)(38 72 47)(39 67 48)(40 68 43)(41 69 44)(42 70 45)
(1 40 51)(2 41 52)(3 42 53)(4 37 54)(5 38 49)(6 39 50)(7 30 83)(8 25 84)(9 26 79)(10 27 80)(11 28 81)(12 29 82)(13 24 69)(14 19 70)(15 20 71)(16 21 72)(17 22 67)(18 23 68)(31 96 74)(32 91 75)(33 92 76)(34 93 77)(35 94 78)(36 95 73)(43 89 58)(44 90 59)(45 85 60)(46 86 55)(47 87 56)(48 88 57)(61 98 108)(62 99 103)(63 100 104)(64 101 105)(65 102 106)(66 97 107)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)
(1 42 49)(2 37 50)(3 38 51)(4 39 52)(5 40 53)(6 41 54)(7 81 26)(8 82 27)(9 83 28)(10 84 29)(11 79 30)(12 80 25)(13 20 67)(14 21 68)(15 22 69)(16 23 70)(17 24 71)(18 19 72)(31 78 92)(32 73 93)(33 74 94)(34 75 95)(35 76 96)(36 77 91)(43 85 56)(44 86 57)(45 87 58)(46 88 59)(47 89 60)(48 90 55)(61 106 100)(62 107 101)(63 108 102)(64 103 97)(65 104 98)(66 105 99)
(1 61)(2 62)(3 63)(4 64)(5 65)(6 66)(7 87)(8 88)(9 89)(10 90)(11 85)(12 86)(13 91)(14 92)(15 93)(16 94)(17 95)(18 96)(19 76)(20 77)(21 78)(22 73)(23 74)(24 75)(25 57)(26 58)(27 59)(28 60)(29 55)(30 56)(31 68)(32 69)(33 70)(34 71)(35 72)(36 67)(37 101)(38 102)(39 97)(40 98)(41 99)(42 100)(43 79)(44 80)(45 81)(46 82)(47 83)(48 84)(49 106)(50 107)(51 108)(52 103)(53 104)(54 105)

G:=sub<Sym(108)| (1,23,58)(2,24,59)(3,19,60)(4,20,55)(5,21,56)(6,22,57)(7,106,94)(8,107,95)(9,108,96)(10,103,91)(11,104,92)(12,105,93)(13,90,52)(14,85,53)(15,86,54)(16,87,49)(17,88,50)(18,89,51)(25,66,73)(26,61,74)(27,62,75)(28,63,76)(29,64,77)(30,65,78)(31,79,98)(32,80,99)(33,81,100)(34,82,101)(35,83,102)(36,84,97)(37,71,46)(38,72,47)(39,67,48)(40,68,43)(41,69,44)(42,70,45), (1,40,51)(2,41,52)(3,42,53)(4,37,54)(5,38,49)(6,39,50)(7,30,83)(8,25,84)(9,26,79)(10,27,80)(11,28,81)(12,29,82)(13,24,69)(14,19,70)(15,20,71)(16,21,72)(17,22,67)(18,23,68)(31,96,74)(32,91,75)(33,92,76)(34,93,77)(35,94,78)(36,95,73)(43,89,58)(44,90,59)(45,85,60)(46,86,55)(47,87,56)(48,88,57)(61,98,108)(62,99,103)(63,100,104)(64,101,105)(65,102,106)(66,97,107), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108), (1,42,49)(2,37,50)(3,38,51)(4,39,52)(5,40,53)(6,41,54)(7,81,26)(8,82,27)(9,83,28)(10,84,29)(11,79,30)(12,80,25)(13,20,67)(14,21,68)(15,22,69)(16,23,70)(17,24,71)(18,19,72)(31,78,92)(32,73,93)(33,74,94)(34,75,95)(35,76,96)(36,77,91)(43,85,56)(44,86,57)(45,87,58)(46,88,59)(47,89,60)(48,90,55)(61,106,100)(62,107,101)(63,108,102)(64,103,97)(65,104,98)(66,105,99), (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,87)(8,88)(9,89)(10,90)(11,85)(12,86)(13,91)(14,92)(15,93)(16,94)(17,95)(18,96)(19,76)(20,77)(21,78)(22,73)(23,74)(24,75)(25,57)(26,58)(27,59)(28,60)(29,55)(30,56)(31,68)(32,69)(33,70)(34,71)(35,72)(36,67)(37,101)(38,102)(39,97)(40,98)(41,99)(42,100)(43,79)(44,80)(45,81)(46,82)(47,83)(48,84)(49,106)(50,107)(51,108)(52,103)(53,104)(54,105)>;

G:=Group( (1,23,58)(2,24,59)(3,19,60)(4,20,55)(5,21,56)(6,22,57)(7,106,94)(8,107,95)(9,108,96)(10,103,91)(11,104,92)(12,105,93)(13,90,52)(14,85,53)(15,86,54)(16,87,49)(17,88,50)(18,89,51)(25,66,73)(26,61,74)(27,62,75)(28,63,76)(29,64,77)(30,65,78)(31,79,98)(32,80,99)(33,81,100)(34,82,101)(35,83,102)(36,84,97)(37,71,46)(38,72,47)(39,67,48)(40,68,43)(41,69,44)(42,70,45), (1,40,51)(2,41,52)(3,42,53)(4,37,54)(5,38,49)(6,39,50)(7,30,83)(8,25,84)(9,26,79)(10,27,80)(11,28,81)(12,29,82)(13,24,69)(14,19,70)(15,20,71)(16,21,72)(17,22,67)(18,23,68)(31,96,74)(32,91,75)(33,92,76)(34,93,77)(35,94,78)(36,95,73)(43,89,58)(44,90,59)(45,85,60)(46,86,55)(47,87,56)(48,88,57)(61,98,108)(62,99,103)(63,100,104)(64,101,105)(65,102,106)(66,97,107), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108), (1,42,49)(2,37,50)(3,38,51)(4,39,52)(5,40,53)(6,41,54)(7,81,26)(8,82,27)(9,83,28)(10,84,29)(11,79,30)(12,80,25)(13,20,67)(14,21,68)(15,22,69)(16,23,70)(17,24,71)(18,19,72)(31,78,92)(32,73,93)(33,74,94)(34,75,95)(35,76,96)(36,77,91)(43,85,56)(44,86,57)(45,87,58)(46,88,59)(47,89,60)(48,90,55)(61,106,100)(62,107,101)(63,108,102)(64,103,97)(65,104,98)(66,105,99), (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,87)(8,88)(9,89)(10,90)(11,85)(12,86)(13,91)(14,92)(15,93)(16,94)(17,95)(18,96)(19,76)(20,77)(21,78)(22,73)(23,74)(24,75)(25,57)(26,58)(27,59)(28,60)(29,55)(30,56)(31,68)(32,69)(33,70)(34,71)(35,72)(36,67)(37,101)(38,102)(39,97)(40,98)(41,99)(42,100)(43,79)(44,80)(45,81)(46,82)(47,83)(48,84)(49,106)(50,107)(51,108)(52,103)(53,104)(54,105) );

G=PermutationGroup([[(1,23,58),(2,24,59),(3,19,60),(4,20,55),(5,21,56),(6,22,57),(7,106,94),(8,107,95),(9,108,96),(10,103,91),(11,104,92),(12,105,93),(13,90,52),(14,85,53),(15,86,54),(16,87,49),(17,88,50),(18,89,51),(25,66,73),(26,61,74),(27,62,75),(28,63,76),(29,64,77),(30,65,78),(31,79,98),(32,80,99),(33,81,100),(34,82,101),(35,83,102),(36,84,97),(37,71,46),(38,72,47),(39,67,48),(40,68,43),(41,69,44),(42,70,45)], [(1,40,51),(2,41,52),(3,42,53),(4,37,54),(5,38,49),(6,39,50),(7,30,83),(8,25,84),(9,26,79),(10,27,80),(11,28,81),(12,29,82),(13,24,69),(14,19,70),(15,20,71),(16,21,72),(17,22,67),(18,23,68),(31,96,74),(32,91,75),(33,92,76),(34,93,77),(35,94,78),(36,95,73),(43,89,58),(44,90,59),(45,85,60),(46,86,55),(47,87,56),(48,88,57),(61,98,108),(62,99,103),(63,100,104),(64,101,105),(65,102,106),(66,97,107)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108)], [(1,42,49),(2,37,50),(3,38,51),(4,39,52),(5,40,53),(6,41,54),(7,81,26),(8,82,27),(9,83,28),(10,84,29),(11,79,30),(12,80,25),(13,20,67),(14,21,68),(15,22,69),(16,23,70),(17,24,71),(18,19,72),(31,78,92),(32,73,93),(33,74,94),(34,75,95),(35,76,96),(36,77,91),(43,85,56),(44,86,57),(45,87,58),(46,88,59),(47,89,60),(48,90,55),(61,106,100),(62,107,101),(63,108,102),(64,103,97),(65,104,98),(66,105,99)], [(1,61),(2,62),(3,63),(4,64),(5,65),(6,66),(7,87),(8,88),(9,89),(10,90),(11,85),(12,86),(13,91),(14,92),(15,93),(16,94),(17,95),(18,96),(19,76),(20,77),(21,78),(22,73),(23,74),(24,75),(25,57),(26,58),(27,59),(28,60),(29,55),(30,56),(31,68),(32,69),(33,70),(34,71),(35,72),(36,67),(37,101),(38,102),(39,97),(40,98),(41,99),(42,100),(43,79),(44,80),(45,81),(46,82),(47,83),(48,84),(49,106),(50,107),(51,108),(52,103),(53,104),(54,105)]])

162 conjugacy classes

class 1 2A2B2C3A···3Z3AA···3BA6A···6Z6AA···6BA6BB···6DA
order12223···33···36···66···66···6
size11331···12···21···12···23···3

162 irreducible representations

dim1111112222
type+++++
imageC1C2C2C3C6C6S3D6C3xS3S3xC6
kernelS3xC32xC6S3xC33C33xC6S3xC3xC6S3xC32C32xC6C32xC6C33C3xC6C32
# reps121265226112626

Matrix representation of S3xC32xC6 in GL4(F7) generated by

1000
0400
0010
0001
,
4000
0400
0010
0001
,
1000
0500
0040
0004
,
1000
0100
0020
0064
,
1000
0100
0023
0065
G:=sub<GL(4,GF(7))| [1,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,5,0,0,0,0,4,0,0,0,0,4],[1,0,0,0,0,1,0,0,0,0,2,6,0,0,0,4],[1,0,0,0,0,1,0,0,0,0,2,6,0,0,3,5] >;

S3xC32xC6 in GAP, Magma, Sage, TeX

S_3\times C_3^2\times C_6
% in TeX

G:=Group("S3xC3^2xC6");
// GroupNames label

G:=SmallGroup(324,172);
// by ID

G=gap.SmallGroup(324,172);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,7781]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^6=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<